

Communicating Research Results to Media and Policy Audiences

Mathew E. Hauer, Ph.D.

Applied Demography Program
University of Georgia

Key Take Away

Presentations

<u>Publications</u>

K.I.S.S.

The title says it all

• Keep It Simple, Stupid

Keep It Simple, Stupid

Table 2. Multivariate Analysis for Red, White, and Processed Meat Intake and Total and Cause-Specific Mortality in Men in the Na., pal Institutes of Health–AARP Diet and Health Study^a

Mortality in Men	Quintile						
(n=322 263)	Q1	Q2 Q3		Q4	Q5	P Value for Trend	
		Red Meat Int	take ^b				
All mortality							
Deaths	137	7835	9366	10 988	13350		
Basic model ^c	1 [Refere. 9]	1.07 (1.03-1.10)	1.17 (1.13-1.2)	1.27 (1.23-1.31)	1.48 (1.43-1.52)	<.001	
Adjusted model ^d	1 [Reference]	1.06 (1.03-1.10)	1.14 (1 1 1.18)	1.21 (1.17-1.25)	1.31 (1.27-1.35)	<.001	
Cancer mortality							
Deaths	2136	2, 4	3309	3839	4448		
Basic model ^c	1 [Reference]	1.10 (1.04-	1.23 (1.16-1.29)	1.31 (1.24-1.39)	1.44 (1.37-1.52)	<.001	
Adjusted model ^d	1 [Reference]	1.05 (0 5-1.11)	1.13 (1.07-1.20)	1.18 (1.12-1.25)	1.22 (1.16-1.29)	<.001	
CVD mortality							
Deaths	1997	2304	21.	3256	3961		
Basic model ^c	1 [Refere ce]	1.02 (0.96-1.08)	1.10 (1.04-1	1.24 (1.17-1.31)	1.44 (1.37-1.52)	< .001	
Adjusted modeld	1 [Pinerence]	0.99 (0.96-1.09)	1.08 (1.02-1.15)	18 (1.12-1.26)	1.27 (1.20-1.35)	<.001	
Mortality from injuries and sudden of	deaths			130			
Deaths	184	216	228	20.	343		
Basic model ^c	1 [Reference]	1.02 (0.84-1.24)	0.97 (0.80-1.18)	1.09 (0.90-1.3.	1.24 (1.03-1.49)	.01	
Adjusted model ^d	1 [Reference]	1.06 (0.86-1.29)	1.01 (0.83-1.24)	1.14 (0.94-1.39)	26 (1.04-1.54)	.008	
All other deaths							
Deaths	1268	1636	1971	2239	2962		
Basic mael ^c	1 [Reference]	1.13 (1.05-1.22)	1.25 (1.17-1.35)	1.33 (1.24-1.42)	1.68 (1.57-1.86)	<.001	
Ad sted modeld	1 [Reference]	1.17 (1.09-1.26)	1.28 (1.19-1.38)	1.34 (1.25-1.44)	1.58 (1.47-1.70)	- 001	

Enrollment Patterns

- Created a unique sequence to describe 18 semesters 6 years of enrollment information. For example:
 - E = Enrolled Undergraduate Student
 - T = Transient Undergraduate Student
 - R = Inter-System Undergraduate Transfer (Out of System)
 - A = Intra-System Undergraduate Transfer (Within the System)
 - C = Co-Enrolled Students
 - G = Graduated with Highest Degree
 - --- = No Enrollment Records
- EE-EE-EE-EEGGGGGGG ← 4 year graduation, no summers
- EE-AE-EEEEEGGGGGG ← Intra-system transfer in 2nd fall, 4.5 year graduation
- Sample: 396,915 students who enrolled in between 2003—2008.

Successful Paths to Graduation

 Top 5 paths to graduation (approx. 37% of 4 to 5 year graduates)

EE-EE-EE-EE-EGGGGG
EE-EEEEEEEEEEGGGGG
EE-EE-EEEEEEEGGGGG
EE-EE-EEEEEEGGGGG
EE-EE-EEEEEEGGGGG

Traditional student enrollment pattern

After freshman year enrolled until graduation

No breaks – enrolled to graduation

After sophomore year enrolled to graduation

Traditional but stay enrolled after 4th year

Enrollment Patterns: Top Paths to Graduation

Top 20 Paths to Graduation by Term - All Students Regardless of Starting Semester or Degree Program

4 yrs		4 yrs + 1 term		4 yrs + 2 terms		5 yrs		
	Term 12	Students	Term 13	Students	Term 14	Students	Term 15	Students
	EE-EEEEEEEGGGGGGG	4,972	EEEEEEEEEEGGGGG	1,647	EE-EE-EE-EGGGGG	1,545	EE-EE-EE-EEGGGG	1,690
	EE-EE-EE-GGGGGGG	4,512	EE-EEEEEEEGGGGGG	1,187	EE-EEEEEEEEGGGGG	1,471	EE-EE-EE-EEEEGGGG	1,266
	EE-EE-EEEEGGGGGGG	4,335	EE-EE-EEEEEGGGGGG	1,113	EEEEEEEEEEEGGGGG	1,448	EE-EE-EEEEEEEGGGG	1,165
	EEEEEEEEEGGGGGG	4,100	EE-EE-EE-EEGGGGGG	748	EE-EE-EEEEEEGGGGG	1,302	EE-EEEEEEEEEGGGG	1,135
	EE-EEEE-EEGGGGGG	2,614	EE-EEEE-EEEGGGGG	389	EE-EE-EE-EEEGGGGG	1,190	EEEEEEEEEEEGGGG	1,097
	EEEEE-EEEEEGGGGGGG	1,336	EEEEE-EEEEEGGGGGG	315	EE-EEEEEEE-EGGGGG	834	EE-EE-EEEE-EEGGGG	675
	EEEEEEE-EEGGGGGG	1,263	EEE-EEEEEEEGGGGGG	279	EE-EE-EEEEE-EGGGGG	817	EE-EEEE-EEEEGGGG	573
	EEEEE-EE-EEGGGGGGG	907	EEEEEEE-EEEGGGGG	203	EE-EEEE-EE-EGGGGG	589	EE-EEEEEEE-EEGGGG	494
	EETEEEEEEEGGGGGG	892	EEEEEEEE-EEGGGGG	184	EE-EEEE-EEEEGGGGG	542	EE-EEEE-EE-EEGGGG	491
	EETEE-EEEEEGGGGGG	523	EEEEEE-EEEEGGGGGG	178	EEEEEEEEEE-EGGGGG	528	EEEEE-EEEEEEEGGGG	428
	EETEEEE-EEGGGGGG	425	EEE-EE-EEEEEGGGGGG	169	EEEEE-EEEEEEGGGGG	480	EEEEEEE-EEEEGGGG	368
	EE-EETEEEEGGGGGGG	339	EETEEEEEEEEGGGGG	159	EEEEEEE-EEEEGGGGG	343	EEEEEEEEEEE-EEGGGG	340
\	EEEEEAEEEEGGGGGG	302	EEE-EEEEE-EEGGGGGG	134	EEEEEEEE-EE-EGGGGG	293	EEEEE-EE-EEGGGG	312
\rangle	EETEE-EE-EEGGGGGG	293	EEEEEAEEEEGGGGGG	133	EEEEE-EEEEE-EGGGGG	283	EEEEE-EE-EEEEGGGG	272
	EEEEE-AEEEEGGGGGG	260	EEEEE-EE-EEEGGGGGG	130	EEEEE-EE-EEEEGGGGG	280	EEEEEEEE-EE-EEGGGG	247
	EE-AEEEEEEGGGGGG	239	EEE-EE-EEGGGGGG	126	EEEEE-EE-EEGGGGG	271	EEEEE-EEEEE-EEGGGG	206
	EETEETEEEEGGGGGG	218	EE-EE-AEEEEEGGGGG	106	EE-EE-AEEEEEGGGGG	175	EE-EE-AE-EE-EEGGGG	202
	EE-EE-AEEEEGGGGGG	197	EEEEEE-EE-EEGGGGGG	105	EETEEEEEEEEGGGGG	174	EE-EE-AE-EEEEEGGGG	187
	EEEEEAEEEEEGGGGGG	173	EEEEEEEEEE-GGGGG	99	EEEEEAEEEEEGGGGG	124	EE-EE-AEEEEEEGGGG	185
	EE-EETEE-EEGGGGGG	171	EEEEE-AEEEEEGGGGGG	94	EEEEE-AEEEEEGGGGG	120	EE-EE-AEEEEGGGG	135
	Other graduation paths	7,369	Other graduation paths	5,467	Other graduation paths	10,546	Other graduation paths	12,686
TE	Total Graduates	35,440		12,965		23,355		24,154

Using data to support students to graduation

Enrollment Pattern Analysis

- Analyzed nearly 400,000 student records
- Created unique 18 character string representing 18 semesters or 6 years of enrollment
- More than 20,000 different unique paths to graduation within 6 years

Using data to support students to graduation

- Most common paths to graduation:
 - Traditional student enrollment pattern
 - No breaks enrolled continuously to graduation
 - Start as a traditional student and then transitions to a continuously enrolled student until graduation
- Many students who graduated in four years took at least one class at another institution as a transient student

MONITOR.

onment Technology Science Culture

ENVIRONMENT

Six Feet 01 13.1 Millio

News Home

CLIMATE CHANGE

See How Y Rising Sea

Millions in US a Study

Sea Level Rise and Polar Melting

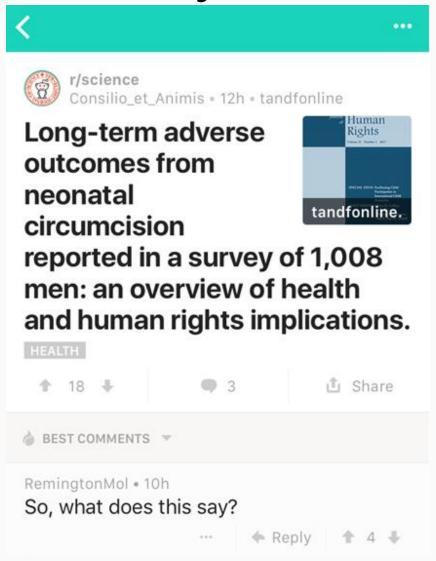
Millions projected to be at risk from sea-level rise in the continental United States, Nature Climate Change — Hauer, Evans, and Mishra

This study estimates that three to six feet of sea level rise will inundate between 4.2 and 13.1 million Americans by the end of the century. Most estimates of future sea level rise impacts assume the same number of people will live on our coasts in the future as there are today, which ignores the trend of people moving to our coastlines. This study projects how many more people might move into coastal areas and put themselves at risk (unless we deter people from doing so). There are a multitude of sea level rise studies, none of which give good news, just varying degrees of how bad it could be. This one's no different, but gives us a clearer picture of why we need to do things differently... very differently.

Takeaway: The ocean's getting higher and it's riskier to live on the coast...so why do so many people still want to live there? Go there for the beach and stay for the...well, um...don't stay.

million

2 maya


E EDUCATE EV

CATE EVENTS

Investigating Sea Level Rise on a Local Level

Millions projected to be at risk from sea-level rise in the continental United States

- 270+ news articles
- 37 interviews
- 21st most discussed article published on Climate Change in 2016
- 172nd most discussed article out of 277,000+ scientific articles

Medical error—the third leading cause of death in the US

Meeting the Sustainable Development Goals leads to lower world population growth

World population stabilization unlikely this century

Heat stress increases long-term human migration in rural Pakistan

NATURE CLIMATE CHANGE

Mashable -

Soa lovol rico could cond U.S. 'climate

NATURE CLIMATE CHANGE | LETTER

Migratian induced

Greater New Orleans

Rising sea to displace study says; see where

BIG JOURNALISM

BIG HOLLYWOOD

ish some U.S.

r from coast

Australia Femail Health Scien

THE OFFICIAL BREITBART STORE

New Simulati Predict the U States' Comi Climate Change Mass Migration

Sea level rise to trigger human migration, reshape inland cities

As sea levels rise, where will all the people go?

Climate change could do a number on inland cities

Key Take Away

Presentations

<u>Publications</u>

K.I.S.S.

The title says it all

• Keep It Simple, Stupid